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Introduction

What is LPPic ?
I Particle in Cell simulation code of magnetized plasma
I Started in 2014
I Particular care taken on computing performance and model validity
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Plasma for space propulsion
Hall effect Thruster and Pegases
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LPPic: presentation
PIC loop

Standard Particle in Cell simulation:
I Explicit
I Electrostatic
I Numerous gases

- Helium
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- Krypton
- Xenon
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LPPic: presentation
Numerical methods

I Electrostatic⇒ Solving Poisson Equation (Hypre or PetsC )
I Particle Motion : Boris scheme 1 or Leapfrog 2

I Cloud-in-Cell : bi-linear interpolation
I Collision Monte-Carlo algorithm3 using LXcat4 data base

1 Boris 1970.
2 Birdsall and Langdon 1985.
3 Vahedi and Surendra 1995.
4 Phelps 2005.
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LPPic: presentation
Simulation cases

Simulation case
HET: R − θ
(case 2b)

HET: Z − θ
(case 2a)

Pegases

Computational
time with 360

CPUs
10µs → 50h 20µs → 2 weeks 40µs → 20h
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Verification & Validation
LPPic: Accuracy

Verification
assessing the numerical accuracy of the
solution to a computational model.5

I Convergence of a solver
I Unit Test or Test cases

Validation
addresses the physics modeling accuracy
of a simulation by comparing it with reality
(experiments, theory).5

I Mezzanine tests
I Benchmarks

4 Oberkampf and Trucano 2008.
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Verification
LPPic: Accuracy

Unit tests
I Poisson solver
I Particle Pusher
I Boundary conditions
I Monte-Carlo Collision
I Diagnostics
I ...

Verify :
I physical results vs. analytical solutions
I validity domain of the module
I error (e.g O(∆x ), etc.)
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Verification
LPPic: Accuracy

Unit tests
I Poisson solver
I Particle Pusher
I Boundary conditions
I Monte-Carlo Collision
I Diagnostics
I ...

Figure: Verification of the Boris scheme
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Verification
LPPic: Accuracy

Unit tests
I Poisson solver
I Particle Pusher
I Boundary conditions
I Monte-Carlo Collision
I Diagnostics
I ...

I Fast (even on PCs)
I Systematic (with Continuous Integration tools)
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Verification
LPPic: Accuracy

Back reproducibility: Can we reproduce previous results ?
I "Verify" all of the code
I We have three cases (HET R-θ, Z-θ, Pegases )
I Longer to run (few days), need cluster
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Validation
LPPic: Accuracy

Validation : comparing the code results with...

Theory : Easier
I Simplified cases can be simulated
I Can validate parts of the code
I [ M. Turner (2016) PSST ]

Experiments: more Difficult
I Some physics is missing
I Large uncertainties
I "What to compare ?"

Other codes: Intermedate
I Easy to compare the results
I What if the results differ ?
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Validation
LPPic: Accuracy

Comparing with other codes: Benchmark
1D CCP Benchmarks [M. Turner (2013) PoP ]

I 5+ independent PIC codes
I 4 cases with different parameters
I Quite complet:

I Poisson (1D)
I Pusher (Leapfrog)
I Wall boundary conditions
I MCC ionization (He)

I Validated: error < 5% Figure: Results of the benchmarks n◦ 1 & 2
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Validation
LPPic: Accuracy

Comparing with other codes: Benchmark
2D CCP Benchmarks (currently developed) 5

I Similare to 1D Benchmark :
I Poisson (2D)
I Pusher (Leapfrog)
I Wall boundary conditions
I MCC ionization

Turner et al., GEC 2018

Figure: Proposition for the 2D CCP He benchmark
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Validation
LPPic: Accuracy

How to Validate new results?

When :
I No theory describe the whole simulation
I The models implemented are not validated

Idea: validate parts of the results with quantitative comparison with theory
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Validation
LPPic: Accuracy

LANDMARK case 2B:
R-θ plan of an HET

I 2D simulation of a steady state
discharge (Axial boundaries + MCC)

I Observed sheath: coherent with
Child-Lamguir law

I Oscillations: Coherent with Ion
Acoustic Wave

I Anomalous mobility: agreement with
fluid and kinetic theory

7 V. Croes (2017), PSST
8 A. Tavant (2018), PSST
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Conclusion

LPPic:
I Versatile and efficient 2D PIC/MCC code
I Can be used for parametric studies
I Validated on 1D Benchmark: Need 2D and/or magnetized Benchmark

LANDMARK:
I Results obtained for case 2B with MCC and axial boundaries
I Presentation case 2A→ talk of T. Charoy
I Validate the results: quantitative comparison with same conditions
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The end

Thank you for your attention !

Life is like a PIC simulation

Trevor Lafleur
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